PCM CODEC - FILTER

IL145567

IL145567N is a one-chip PCM-cofidec which converts speech signal into digital form and backwards. The IC is design to operate in synchronous and asynchronous systems and is comprised of: - reference generator;

- filters on switching capacitors in transmission and receipt channels; - two operational amplifiers.

The IC does signal companding under the A-low and full differential processing of analogue signals for reduction of noises. Typical dissipated power is 40 mW , under reduced power -1 mW at $\pm 5 \mathrm{~V}$.

Note - COMP - comparator

Figure 1 - Block diagram

Pin arrangement in package

Pins description

Pin No	Symbol	Description
01	VPO+	Output of power OA
02	GND	Common output
03	VPO -	Output of power OA
04	VPI	Input of power OA
05	$\mathrm{VF}_{\mathrm{R}} \mathrm{O}$	Output of digital signal audio frequency
06	Vcc	Supply 5 V
07	FS_{R}	Input of receipt cycle synchronisation
08	D_{R}	Input of digital data receipt
09	$\mathrm{BCLK}_{\mathrm{R}} / \mathrm{CLKSEL}$	Input of clock oscillator and selector of basic oscillator frequency
10	$\mathrm{MCLK}_{\mathrm{R}} / \mathrm{PDN}$	Input of main clock oscillator and underconsumption control
11	MCLKx	Input of main clock oscillator for transmission
12	BCLKx	Input of clock oscillator for data transmission (synchronised with MCLKx)
13	Dx	Output of transmitted digital data
14	FSx	Input of transmission cycle synchronisation
15	$\overline{\mathrm{TSx}}$	Output of transmission temporary interval indicator
16	ANBL	Input of feedback loop control
17	GSx	Output of input OA
18	VFxI-	Input of transmitted audio frequency (inverting)
19	VFxI+	Input of transmitted audio frequency (noninverting)
20	$\mathrm{V}_{\text {BB }}$	Supply minus 5 V

Supply source

Characteristics	$\boldsymbol{m i n}$	$\boldsymbol{m a x}$	Unit	
Supply voltage of constant current	V_{CC}	4.75	5.25	V
	$\mathrm{~V}_{\mathrm{BB}}$	-4.75	-5.25	
Consumption power in active mode (without load)	$\mathrm{VPI}=\mathrm{V}_{\mathrm{BB}}$	-	70	
			60	mW
Consumption power in sleep mode (without load)	$\mathrm{VPI}=\mathrm{V}_{\mathrm{BB}}$	-	5.0	
			3.0	

Digital signal strength

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%\right.$, GNDA $\left.=0 \mathrm{~V}\right)$

Characteristics		Symbol	Min	Max	Unit
Input voltage Low		$\mathrm{V}_{\text {IL }}$	-	0.6	V
Input voltage High		V_{IH}	2.2	-	
Output voltage Low	$\begin{aligned} & \mathrm{D}_{\mathrm{X}} \text { or } \overline{\mathrm{TS}_{\mathrm{X}}}, \\ & \mathrm{I}_{\mathrm{OL}}=3.2 \mathrm{~mA} \\ & \hline \end{aligned}$	$\mathrm{V}_{\text {OL }}$	-	0.4	
Output voltage High	$\begin{aligned} & \mathrm{D}_{\mathrm{X}}, \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-1.6 \mathrm{~mA} \\ & \hline \end{aligned}$	V_{OH}	$\begin{gathered} 2.4 \\ \mathrm{~V}_{\mathrm{CC}}-0.5 \end{gathered}$		
Input current Low	GNDA $\leq \mathrm{V}_{\text {in }} \leq \mathrm{V}_{\mathrm{CC}}$	I_{IL}	-10	+10	mkA
Input current High	GNDA $\leq \mathrm{V}_{\text {in }} \leq \mathrm{V}_{\text {CC }}$	I_{HH}	-10	+10	
Output current in the third state	GNDA $\leq \mathrm{D}_{\mathrm{X}} \leq \mathrm{V}_{\mathrm{CC}}$	I_{OZ}	-10	+10	

Dynamic characteristics of digital signals

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%\right.$, values of all signals are indicated relatively to GNDA)

Characteristics	Symbol	min	typical	max	Unit
Frequencies of main clock oscillators $\begin{gathered}\text { MCLK } \\ \mathrm{MCLK}_{R}\end{gathered}$	fm	-			
			$\begin{array}{r} 1.544 \\ 2.048 \\ \hline \end{array}$	-	MHz
Min width of high or low pulse ${ }^{\text {a }}$	$\mathrm{t}_{\mathrm{w}(\mathrm{M})}$	100	-		ns
Min width of high or low pulse ${ }^{\text {a }}$	$\mathrm{t}_{\mathrm{w}(\mathrm{B})}$	50			ns
Min width of low pulse $\quad \mathrm{FS}_{\mathrm{X}}$ or FS_{R}	$\mathrm{t}_{\mathrm{w} \text { (FL) }}$	50			ns
Rise time	t_{r}	50			ns
Fall time	t_{f}	50			ns
Ratings of data bit synchronisation $\mathrm{BCLK}_{\mathrm{X}}$ or BCLK_{R}	f_{B}	128		4096	kHz
Presetting time of from low BCLK_{X} to high MCLK_{R}	$\mathrm{t}_{\text {su(BRM }}$	50		-	ns
Presetting time from high $\mathrm{MCLK}_{\mathrm{X}}$ to low $\mathrm{BCLK}_{\mathrm{X}}$	$\mathrm{t}_{\text {su(MFB) }}$	20			ns
Holding time from low $\mathrm{BCLK}_{\mathrm{X}}\left(\mathrm{BCLK}_{\mathrm{R}}\right)$ to high $\mathrm{FS}_{\mathrm{X}}\left(\mathrm{FS}_{\mathrm{R}}\right)$	$\mathrm{t}_{\mathrm{h}(\mathrm{BF})}$	20			ns
Presetting time from high $\mathrm{FS}_{\mathrm{X}}\left(\mathrm{FS}_{\mathrm{R}}\right)$ to low $\mathrm{BCLK}_{\mathrm{X}}\left(\mathrm{BCLK}_{\mathrm{R}}\right)$ for long frames	$\mathrm{t}_{\text {sul(FB) }}$	80			ns
Delay time from high $\mathrm{BCLK}_{\mathrm{X}}$ to setting correct data on D_{X}	$\mathrm{t}_{\mathrm{d} \text { (BD) }}$	20		140	ns
Delay time from high $\mathrm{BCLK}_{\mathrm{x}}$ to low $\overline{\mathrm{TS}_{\mathrm{X}}}$	$\mathrm{t}_{\text {(BTS) }}$	20		140	ns
Delay time of inhibition of output data D_{X} relatively to $8^{\text {th }}$ clock pulse $\mathrm{BCLK}_{\mathrm{X}}$	$\mathrm{t}_{\mathrm{d}(\mathrm{ZC})}$	50		140	ns
Time of setting correct data after entry of signals FS_{X} or $\mathrm{BCLK}_{\mathrm{X}}$ (the later of them)	$\mathrm{t}_{\mathrm{d} \text { (ZF) }}$	20		140	ns
Time of presetting data D_{R} relatively to clock pulse $\mathrm{BCLK}_{\mathrm{R} \text { edge }}$	$\mathrm{t}_{\text {su(DB) }}$	0		-	ns
Holding time from low BCLK ${ }_{\text {R }}$ to switching off D_{R}	$\mathrm{t}_{\mathrm{h}}(\mathrm{BD})$	50			ns
Presetting time from high level $\mathrm{FS}_{\mathrm{X}}\left(\mathrm{FS}_{\mathrm{R}}\right)$ to low level $\mathrm{BCLK}_{\mathrm{X}}$ $\left(B_{C L K}\right)$ under synchronisation standard Short Frame	$\mathrm{t}_{\mathrm{su}(\mathrm{F})}$	50			ns
Holding time from low level $\mathrm{BCLK}_{\mathrm{X}}\left(\mathrm{BCLK}_{\mathrm{R}}\right)$ to low level FS_{X} $\left(\mathrm{FS}_{\mathrm{R}}\right)$ for synchronisation Short Frame	$\mathrm{t}_{\mathrm{h}(\mathrm{F})}$	50			ns
Holding time from $2^{\text {nd }}$ period of low level $\mathrm{BCLK}_{\mathrm{X}}\left(\mathrm{BCLK}_{R}\right)$ to low level $\mathrm{FS}_{\mathrm{X}}\left(\mathrm{FS}_{\mathrm{R}}\right)$ for synchronisation Long Frame	$\mathrm{t}_{\mathrm{h} \text { (BFI) }}$	-	50		ns

Analogue electrical characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{VF}_{\mathrm{X}} \mathrm{I}\right.$ - connected to $\left.\mathrm{GS}_{\mathrm{X}}\right)$

Characteristic	min	typical	max	Unit
Input current (-2.5 V $\left.\leq \mathrm{V}_{\text {in }} \leq 2.5 \mathrm{~V}\right) \quad \mathrm{VF}_{\mathrm{X}} \mathrm{I}+, \mathrm{VF}_{\mathrm{X}} \mathrm{I}-$	-	-	± 0.2	mkA
Input impedance to GNDA at frequency 1 kHz	10		-	MOhm
Input capacitance $\mathrm{VF}_{\mathrm{X}} \mathrm{I}+, \mathrm{VF}_{\mathrm{X}} \mathrm{I}-$	-		10	pF
Input bias voltage GS_{X} Op Amp $\mathrm{VF}_{\mathrm{X}} \mathrm{I}+, \mathrm{VF}_{\mathrm{X}} \mathrm{I}-$	-		± 25	mV
Range of input common-mode voltages $\quad \mathrm{VF}_{\mathrm{X}} \mathrm{I}+, \mathrm{VF}_{\mathrm{X}} \mathrm{I}-$	-2.5		2.5	V
Amplification ratio without feedback GS_{X} Op Amp ($\mathrm{R}_{\text {load }} \geq 10 \mathrm{kOhm}$)	75		-	dB
Attenuation factor of in-phase components on out. $\mathrm{VF}_{\mathrm{X}} \mathrm{I}+$, $\mathrm{VF}_{\mathrm{X}} \mathrm{I}-$		65		dB
Frequency band of unity gain on out. $\mathrm{GS}_{\mathrm{X}} \mathrm{Op}$ Amp $\left(\mathrm{R}_{\text {load }} \geq 10 \mathrm{kOhm}\right)$		1000		kHz
Equivalent input noise between out. $\mathrm{VF}_{\mathrm{X}} \mathrm{I}+$, $\mathrm{VF}_{\mathrm{X}} \mathrm{I}-$ and GS_{X}		-20		dBm
Load capacitance for GS_{X} Op Amp	0		100	pF
Output range of voltages for $\mathrm{GS}_{\mathrm{X}} \mathrm{llolat}$.		$\begin{array}{r} -3.5 \\ -2.8 \\ \hline \end{array}$	$\begin{array}{r} +3.5 \\ +2.8 \\ \hline \end{array}$	V
Output current (-2.8 V $\leq \mathrm{V}_{\text {out }} \leq 2.8 \mathrm{~V}$) $\mathrm{GS}_{\mathrm{X}}, \mathrm{VF}_{\mathrm{R}} \mathrm{O}$		± 5.0	-	mA
Output impedance on out. $\mathrm{VF}_{\mathrm{R}} \mathrm{O}$ in the frequency range from 0 to 3.4 kHz		1		Ohm
Load capacitance for output $\mathrm{VF}_{\mathrm{R}} \mathrm{O}$	0		500	pF
Bias voltage for output $\mathrm{VF}_{\mathrm{R}} \mathrm{O}$ relatively to GNDA	-		± 100	mV
Noise abatement on supply on transmission (+) - from 0 to 100 kHz ; (-) - from 0 to 100 kHz ;	$\begin{aligned} & 45 \\ & 45 \\ & \hline \end{aligned}$			dB

Analogue transmission characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \pm 5 \%, \mathrm{GNDA}=0 \mathrm{~V}, \mathrm{dBm} 0=1.2276 \mathrm{Vrms}=4 \mathrm{dBm}\right.$ with load 600 Ohm , $\mathrm{FS}_{\mathrm{X}}=\mathrm{FS}_{\mathrm{R}}=8 \mathrm{kHz}, \mathrm{BCLK}_{\mathrm{X}}=\mathrm{MCLK}_{\mathrm{X}}=2.048 \mathrm{MHz}$ at synchronous operation, $\mathrm{VF}_{\mathrm{XI}}$ - connected to GS_{X})

Characteristic		Through channel		Channel AD		Channel DA		Unit
		min	max	min	max	min	max	
Change of amplification ratio (relatively to level 0 dBm 0 on frequency $1.02 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, at$\left.\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V}\right)$		-	-	-0.25	0.25	-0.25	0.25	dB
Change of amplification ratio depending on temperature	$\begin{array}{r} 0 \text { to } 70^{\circ} \mathrm{C} \\ -40 \text { to }+85^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	-	$\begin{aligned} & \pm 0.03 \\ & \pm 0.06 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \pm 0.03 \\ & \pm 0.06 \end{aligned}$	dB
Change of amplification ratio depending on supply voltage ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \pm 5 \%, \mathrm{~V}_{\mathrm{BB}}=5 \mathrm{~V} \pm 5 \%$)		-	-	-	± 0.02	-	± 0.02	dB
Change of amplification ratio depending on signal strength (relatively to level - 10 dBm 0 on frequency 1.02 kHz) *	$\begin{aligned} & \text { from } 3 \text { to }-40 \mathrm{~dB} \\ & \text { from }-40 \text { to }-50 \mathrm{~dB} \\ & \text { from }-50 \text { to }-55 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \hline-0.4 \\ & -0.8 \\ & -1.6 \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & 0.8 \\ & 1.6 \end{aligned}$	$\begin{aligned} & \hline-0.2 \\ & -0.4 \\ & -0.8 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.4 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline-0.2 \\ & -0.4 \\ & -0.8 \end{aligned}$	$\begin{aligned} & \hline-0.2 \\ & -0.4 \\ & -0.8 \end{aligned}$	dB
Total distortions of signal at frequency 1 kHz	$\begin{array}{r} 3 \mathrm{dBm} 0 \\ 0 \div-30 \mathrm{dBm0} \\ -40 \mathrm{dBm0} \\ -45 \mathrm{dBm} 0 \\ -55 \mathrm{dBm} 0 \end{array}$	$\begin{aligned} & 33 \\ & 35 \\ & 29 \\ & 24 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 33 \\ & 36 \\ & 30 \\ & 25 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 33 \\ & 36 \\ & 30 \\ & 25 \\ & 15 \end{aligned}$	-	dB
Total distortions with pseudonoise as per CCITT G. 714	$\begin{array}{r} \hline-3 \mathrm{dBm0} \\ 6 \div-27 \mathrm{dBm0} \\ -34 \mathrm{dBm0} \\ -40 \mathrm{dBm0} 0 \\ -55 \mathrm{dBm} 0 \end{array}$	$\begin{gathered} 27.5 \\ 35 \\ 33.1 \\ 28.2 \\ 13.2 \end{gathered}$	-	$\begin{gathered} 28 \\ 35.5 \\ 33.5 \\ 28.5 \\ 13.5 \end{gathered}$	-	$\begin{gathered} 28.5 \\ 36 \\ 34.2 \\ 30 \\ 15 \end{gathered}$	-	dB
Noise of "silent" channel (for trough channel and channel AD psophometrically weighted)		-	-70	-	-70	-	-83	dBm
Amplitude-frequency characteristi (AFC). (Relatively to level 0 dBm 0 at frequency 1.02 kHz) *	15 Hz 50 Hz 60 Hz 200 Hz from 300 to 3000 Hz 3300 Hz 3400 Hz 4000 Hz 4600 Hz	$\begin{gathered} - \\ - \\ - \\ -0.3 \\ -0.70 \\ -1.6 \\ - \end{gathered}$	$\begin{gathered} \hline-40 \\ -30 \\ -26 \\ - \\ 0.3 \\ 0.3 \\ 0 \\ -28 \\ -60 \\ \hline \end{gathered}$	$\begin{gathered} - \\ - \\ - \\ -1.0 \\ -0.15 \\ -0.35 \\ -0.8 \\ - \end{gathered}$	$\begin{gathered} \hline-40 \\ -30 \\ -26 \\ -0.4 \\ 0.15 \\ 0.15 \\ 0 \\ -14 \\ -32 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline-0.15 \\ -0.15 \\ -0.15 \\ -0.15 \\ -0.15 \\ -0.35 \\ -0.8 \\ - \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0.15 \\ 0.15 \\ 0 \\ -14 \\ -30 \\ \hline \end{array}$	dB
Noise level in the frequency range from 300 to 3000 Hz (relatively to level 0 dBm 0 at frequency 1.02 kHz under transmission and receipt) *		-	-48	-	-48	-	-48	dB
Attenuation of parasitic harmonics beyond the limits of gating frequency VFRO VFRO (Relatively to input signal of frequency $300-3400 \mathrm{~Hz}$ and level 0 dBm 0)	from 4600 to 7600 Hz from 7600 to 8400 Hz from 8400 to 100000 Hz	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & -30 \\ & -40 \\ & -30 \end{aligned}$	-	-	-	$\begin{aligned} & -30 \\ & -40 \\ & -30 \end{aligned}$	dB

continued

Characteristic	Trough channel		Channel AD		Channel DA		Unit
	min	max	min	max	min	max	
Noise of "silent" selected channel (for frequency 8 kHz . Input - GNDA)	-	-70	-	-	-	-70	dBm
Absolute delay (on frequency 1600 Hz)	-	-	-	315	-	215	mks
Group delay relatively to signal of frequency 1600 Hz							
$500 \div 600 \mathrm{~Hz}$	-	-	-	220	-40	-	mks
$600 \div 800 \mathrm{~Hz}$				145	-40	-	
$800 \div 1000 \mathrm{~Hz}$				75	-40	-	
$1000 \div 1600 \mathrm{~Hz}$				40	-30	-	
$1600 \div 2600 \mathrm{~Hz}$				75	-	90	
$2600 \div 2800 \mathrm{~Hz}$				105		125	
$2800 \div 3000 \mathrm{~Hz}$				155		175	
Crosstalk of signal of frequency 1020 Hz for AD or DA	-	-	-	-75	-	-75	dB
Intermodulation distortions of two signals with amplitude from minus 4 to minus 21 dBm 0 for the range $300 \div 3400 \mathrm{~Hz}$	-	-41	-	-41	-	-41	dB
* Parameters of the channels A / D and D / A are guaranteed by measuring through channel parameters							

Power OA

Characteristic	min	typical	max	Unit
Input current (-1 V $\leq \mathrm{VPI} \leq 1 \mathrm{~V}) \quad \mathrm{VPI}$	-	-	± 0.5	mkA
Input resistance (-1 V $\leq \mathrm{VPI} \leq 1 \mathrm{~V}$) VPI	5	10	-	MOhm
Input bias voltage (VPI connected to VPO-) VPI	-	-	± 50	mV
Output resistance VPO-or VPO+	-	1	-	Ohm
Amplification ratio from $\mathrm{VPO}-$ to $\mathrm{VPO}+\left(\mathrm{R}_{\text {load }}=300 \mathrm{Ohm}, \mathrm{VPO}+\right.$ to GNDA, level on VPO- equals $1.77 \mathrm{Vrms}, 3 \mathrm{dBm} 0$)	-	-1	-	V/V
Maximum level 0 dBm 0 for better than $\pm 0.1 \mathrm{~dB}$ linearity in the range more than from -10 dBm 0 to 3 dBm 0 (for $\mathrm{R}_{\text {load }}$ between VPO+ and VPO)				
$\begin{gathered} \mathrm{R}_{\text {load }}=600 \mathrm{Ohm} \\ \mathrm{R}_{\text {load }}=1200 \mathrm{Ohm} \\ \mathrm{R}_{\text {load }}=10 \mathrm{\kappa Ohm} \\ \hline \end{gathered}$	$\begin{aligned} & 3.3 \\ & 3.5 \\ & 4.0 \\ & \hline \end{aligned}$	-	-	Vrms *
Noise attenuation on supply on Vcc or V_{BB} (VPO- connected to VPI) $\mathrm{VPO}-$ or $\mathrm{VPO}+$ connected to GNDA				dB
$0-4 \mathrm{kHz}$ $4-50 \mathrm{kHz}$	$\begin{aligned} & 55 \\ & 35 \end{aligned}$			
Differential noise attenuation on supply on Vcc or V_{BB} (VPO- connected to VPI), VPO- connected to VPO + , $\quad 0-50 \mathrm{kHz}$	50			dB
Load capacitance ($\mathrm{R}_{\text {load }} \geq 300 \mathrm{Ohm}$) VPO+ or VPO- to GNDA	0		1000	
$\mathrm{dBm} 0=1.2276 \mathrm{Vrms}=4 \mathrm{dBm}$				

At Short Frame synchronisation, synchronisation pulses FSx or FS_{R} should have duration equal to duration of clock generator MCLK pulses.

Figure 3 - Time diagram at Short Frame synchronisation

At Long Frame synchronisation, synchronisation pulses FSx or FS_{R} should have duration not less than 3 bits of clock generator MCLK.

Figure 4 - Time diagram at Long Frame synchronisation

Package Dimension

N SUFFIX PLASTIC DIP
(MS - 001AD)

NOTES:

ϕ	$0.25(0.010)(1)$	T

1. Dimensions " A ", " B " do not include mold flash or protrusions.

Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	24.89	26.92
\mathbf{B}	6.10	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.20	0.36
\mathbf{N}	0.38	

